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Abstract
PARP family members can be found spread across all domains and continue to 
be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) poly-
merase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a 
ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular 
processes such as DNA repair and cell death. This review assesses current devel-
opments in PARP-1 biology and activation signals for PARP-1, other than conven-
tional DNA damage activation. Moreover, many essential functions of PARP-1 still 
remain elusive. PARP-1 is found to be involved in a myriad of cellular events via 
conservation of genomic integrity, chromatin dynamics and transcriptional regula-
tion. This article briefly focuses on its other equally important overlooked functions 
during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics 
and differentiation. Understanding the role of PARP-1, its multidimensional regula-
tory mechanisms in the cell and its dysregulation resulting in diseased states, will 
help in harnessing its true therapeutic potential.
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1  | INTRODUCTION

Poly (ADP-ribose) polymerase (PARP) enzymes are a family of pro-
teins involved in a number of cellular processes including gene reg-
ulation, chromatin remodelling, DNA repair and apoptosis.1 These 
enzymes are present in all eukaryotes except yeast.2 PARPs can either 
transfer a single unit of (ADP-ribose) or more than one (ADP-ribose) 
moieties from  NAD+onto substrates yielding poly (ADP-ribose) 
(PAR) chains, which can be of varying length and branch content. 
ADP-ribosyltransferase D-type 1 (ARTD-1 or PARP-1) falls in the 
latter category.1,3 The PAR polymers are rapidly degraded by poly 
(ADP-ribose) glycohydrolase (PARG)4 possessing both endoglyco-
sidic and exoglycosidic activities,5 and PAR hydrolase (ARH3), which 
also shares catalytic domain similarity with PARG.6 However, ARH3 
does not hydrolyse ADP-ribose-arginine, -cysteine, -diphthamide 
or -asparagine bonds.6 Another set of enzymes known as macro 
domain-containing proteins and NUDIX hyrolases have also been 
reported to be involved in PAR degradation.7,8 There are 17 different 
homologues of PARP that have a conserved catalytic domain with 

various domains like zinc finger, BRCT, SAM, SAP, ankyrin and macro 
domain.9 Though PARP-1 has been demonstrated as a key player in 
DNA repair and cell death, many of its equally vital cellular functions 
have been overlooked. In this review, we discuss the distribution 
of PARP homologues across all organisms and the role of PARP-1 
in various cellular functions like transcription, spermatogenesis, epi-
genetics and the most novel in differentiation and multicellularity.

2  | THE PARP FAMILY

Based on new proposed nomenclature by Hottiger et  al.,10 the 
human PARP (hPARP) family is classified into three groups depend-
ing on their motifs and functions: (1) PARP 1-5: have a conserved 
glutamate residue (Glu988); (2) PARP 6-8, 10-12 and 14-16: are 
putative mono-(ADP-ribose) polymerases and (3) PARP 9 and 13 
which do not have PARP signature motif that binds NAD+nor do 
they have Glu988 implying that they are inactive.10 PARP super-
family can be subdivided into six clades which are shown in Table 1.
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Out of 17 members, PARP-1 (113 kDa) was the first characterized 
and extensively studied enzyme recognized to play an essential role in 
DNA repair.11 PARP-1 and PARP-2 share ~69% homology in the cata-
lytic domain and they are documented as vital proteins in DNA repair 
system,2 while PARP-3 is reported to be a mono-ADP-ribosylating 
enzyme by Loseva and group.12 PARP-2 and PARP-3 were considered 
as a subgroup of PARP-1 as they all carry out synthesis of branched 
polymers.13 PARP-4 also known as Vault PARP, is a ribonucleoprotein 
complex having PARylation activity and it is thought to be involved 
in multidrug resistance of tumour and intracellular transport.14 
Tankyrase-1 (TRF-1-interacting ankyrin-related ADP-ribose poly-
merase-1), also known as PARP5a, is identified to enhance telomere 
elongation by telomerase.15 Other PARP homologues show structural 
and functional differences. Tankyrase-2 lacks N-terminal HPS (His-
Pro-Ser) domain, but it may share some overlapping functions with 
tankyrase-1.16 Other PARP family members like tiPARP, PARP-12 and 
PARP-13 share PARP catalytic, WWE and CX8CX5CX3-like zinc finger 
domains.2 PARP-13 has been reported to be an important regulator of 
cellular mRNA via regulation of miRNA activity.17 The next subgroup 
which includes PARP-9/BAL1, PARP-14/BAL2/CoaSt6 and PARP-15/
BAL3 are macro-PARPs, characterized by macro domains positioned 
before the PARP domain. This domain is found to be involved in tran-
scriptional repression and X-chromosome inactivation, suggesting 
it as a transcription factor.18 The RNA recognition motif (RRM) and 
the Gly-rich domain of PARP-10 are known to help in binding of RNA 
with proto-oncoprotein c-Myc.2 Other PARP family members such 
as PARP-6, PARP-8, PARP-11 and PARP-16 have been identified but 
their functions are still elusive, though PARP-8 and 16 have been 
recently shown to be involved in assembly or maintenance of mem-
branous organelles.19

3  | DISTRIBUTION OF PARP ACROSS LIFE

3.1 | PARP in lower life forms

3.1.1 | PARP in bacteria

Numerous PARP-like proteins are detected in several bacterial 
genomes.20,21 Till now, around 28 PARP homologues have been 
suggested across 27 bacterial species.22 However, only a few bacteria 
possess the entire machinery required for PARP metabolism. Some 
also show the conserved histidine-tyrosine-glutamate (H-Y-E) catalytic 
triad which is essential for its activity.21 PARP from Herpetosiphon 
aurantiacus has been reported to have conserved catalytic triad hav-
ing the same characteristics as human PARP-1 enzyme.21

3.1.2 | PARP in archaea

Archaea do show the presence of PARP homologues. PARP-like 
thermozymes have been identified from Sulfolobus solfataricus. This 
PARP-like protein shows oligo (ADP-ribosyl) transferase activity 
and DNA-binding activity.23

3.1.3 | PARP in viruses

PARP-like proteins have also been identified in a few double-stranded 
DNA viruses 24 such as Aeromonas phage—Aeh1, Anticarsia gem-
matalis nucleopolyhedro virus, invertebrate iridescent virus 6 and 
cellulophagaphage phi4:1. All these viral PARPs have been found 
to possess the conserved catalytic triad H-Y-E with an exception 
of one which has an aspartate instead of glutamate suggesting 
that these PARPs are active ADP-ribosyl transferases. Some viruses 
such as Herpes simplex virus and Epstein-Barr virus have also 
been reported to use PAR metabolism for their replication.25,26

3.2 | PARP in higher eukaryotes

PARPs are found in a divergent group of eukaryotes.9,10 PARP 
expression has been identified in nearly all eukaryotic cells ranging 
from plants to vertebrates.27 PARP-1 was long assumed to be the 
single enzyme with PARylation function until two PARP isoforms 
were discovered in plants.28 Citarelli et  al.29 investigated at least 
two more PARP proteins in the last common extant ancestor of 
eukaryotes.

In conclusion, it is clear that the complexity of PARP proteins is 
augmented with the evolutionary level of the species. Vyas et al.19 evi-
dently illustrated that this domain complexity confers the diversity in 
functions to the PARP family.

PARP-1 is best studied out of this 17-member family of hPARPs. 
PARP has been implicated in development and cell differentiation 
from lower life forms to higher eukaryotes.30 However, it is involved 
in a plethora of functions and many of its functions in spermatogene-
sis, epigenetics and differentiation remain unclear. Thus, understand-
ing PARP-1 and its role in the above processes is the focus of this 
review.

4  | PARP-1: STRUCTURE, ACTIVATION 
SIGNALS AND ITS DIVERSE CELLULAR ROLES

4.1 | Gene organization of PARP-1 and its 
modifications

PARP-1 (EC 2.4.2.30) is a prominent member of the PARP family. 
It is a nuclear enzyme with approximately 106 molecules per cell 
31 and accounts for 80%–90% of total cellular PARylation. Gene 
structure of PARP-1 mainly consists of DNA binding, an auto 
modification and a catalytic domain (Fig. 1). (1) The N-terminal 
DNA-binding domain has three zinc fingers and a nuclear localiza-
tion sequence (NLS). The two homologous zinc finger proteins 
(Zn1 and Zn2) are characterized by a CCHC ligand pattern.32,33 
(2) The auto modification domain has BRCA1 C terminus (BRCT) 
motif and it is involved in protein-protein interaction.2,10,34 (3) The 
catalytic domain at C terminus comprises of PARP signature motif 
(six β-strands and one α-helix) that binds to NAD+and glutamate 
residue at its 988 position.2
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TABLE  1 Distribution of PARP. PARP has been divided into six clades depending on the domains present22,29 and 30

Clade Clade sub group Class Key features

Clade 1 Clade 1A Amoebozoa (Dictyostelium) Opisthokonta (Fungi) 
Chromalveolates

Ankyrin repeats, WGR PRD, PARP catalytic 
domains. 

Clade 1B Opisthokonta (animals and Choanoflagellata) and the 
Excavata (the Heterolobosea member Naegleria)

three N-terminal zinc fingers that contribute to 
DNA binding, a BRCT domain and a PADR1 
domain in addition to WGR, PRD and the 
catalytic domain

Clade 1C Oomyocete Phytophtora species (within the Excavata) and 
one basal animal.

WGR, PRD and PARP catalytic domains and 
mostly do not contain other functional 
domains.

Clade1D Opisthokonta, the animals Xenopus laevis (Q566G1) and 
Schistosoma japonicum  
(Q5DAZ0) and the fungus Batrachochytrium dendrobatidis 
and Plantae (land plants) as well as ciliate members of the 
Chromalveolates.

WGR, PRD and PARP catalytic domains and 
mostly do not contain other functional 
domains. 

Clade 1E most of the fungal members of Clade 1 BRCT domains N-terminal to WGR, PRD and 
PARP catalytic domains. 

Clade 1F the Excavata —
Clade 1G Opisthokonta (both animals and the Choanoflagellate 

Monosiga brevicollis)
only WGR, PRD and PARP catalytic domains

Clade 1H Two Caenorhabditis elegans (C. elegans) proteins PADR1, WGR, PRD and PARP
Clade2 Clade 2A — an N-terminal WWE domain, the PARP 

signature and a C-terminal extension
Clade 2B — only the PARP signature and the C-terminal 

extension
Clade 3 Clade 3A — RRM RNA-binding domain, a glycine-rich region 

(GRD), and a UIM domain
Clade 3B Trichoplax adhaerens Macro domain N-terminal to their C-terminal 

catalytic domain
Clade 3C — Macro domain N-terminal to their C-terminal 

catalytic domain
Clade 3D two Dictyostelium discoideum and four Tetrahymena 

thermophila proteins
—

Clade 3E — one to two WWE domains, alone or in 
combination with zinc fingers (either CCCH or 
CCCH types) in front of their PARP catalytic 
domains

Clade3F — PARP9
Clade 4 Clade 4 — 15–18 ankyrin repeats followed by a sterile 

alpha motif (SAM) and the PARP catalytic 
domain

Clade 5 Clade 5A Opishthokonts (animals) the PARP signature is found in the middle of the 
protein, rather than at the C terminus

Clade 5B  Amoebozoa —

Clade 6 Clade 6A Opisthokonts (animals and fungi), Excavates (Parabasalids 
and Heterolobosa), and Plantae (chlorophyta and 
bryophytes)

N termini with no known functional domains 
and C-terminal extensions beyond the PARP 
catalytic domain of varying lengths

Clade 6B PfamB_2311 domains as well as the PARP 
catalytic domain

Clade 6C   PfamB_2311 domain and a PARP catalytic 
domain

Clade 6D Deuterostomes with the exception of the mollusc Lottia 
gigantean

PfamB_2311 domain and the PARP catalytic 
domain

Clade 6E seven proteins encoded by Trichomonas vaginalis PfamB_2311 domain and the PARP catalytic 
domain

The next important component of this enzyme is the PARP sig-
nature motif (PSM). It has two sites, acceptor site for adenosine and 
donor site for nicotinamide wherein ADP residues from NAD+are 

transferred to target site.35 His-862 and Glu-988 play important role 
in NAD+binding.36 In addition to this, WGR domain also contains 
highly conserved amino acid sequence i.e. Trp, Gly and Arg, but its role 
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is yet to be identified.2,34 However, Langelier et al.37 showed that Zn3 
along with Zn1 and WGR domain of PARP-1 together bind to the DNA 
damage leading to structural changes eventually abridging DNA dam-
age site to its catalytic domain.

Other than auto modification by PARylation, PARP-1 itself under-
goes various other modifications enlisted in Table 2 that has various 
cellular effects.38–43

4.2 | Mechanism of PARP-1 activation

The enzymatic activity of PARP-1 is stimulated significantly in the 
presence of a range of activators like damaged DNA, non-B-DNA 
structures, nucleosomes and various protein-binding partners.1,44–46 
Lonskaya et al.47 reported that DNA bent, cruciform DNA or stably 
unpaired DNA regions can also stimulate PARylation. The activa-
tion signal for PARP-1 is DNA damage although several reports 
illustrate that PARP-1 may also be activated in the absence of 
DNA damage. The best characterized ligands for PARP-1 are single-
strand and double-strand breaks (SSBs and DSBs).

There are reports suggesting that PARP-1 activation by SSBs 
requires presence of both the zinc fingers while only Zn1 is required 
for DSBs.33 Zn1 has been demonstrated to relay the signals to the cat-
alytic domain for formation of PAR molecules,33,48 while Zn2 has been 
shown to be majorly involved in DNA binding as compared to Zn1 due 
to its higher affinity to DNA.49 Eustermann et al.50 have demonstrated 
very recently how the two zinc fingers recognize SSBs and coordinate 

domain folding in PARP-1 to control the activity of the C-terminal cat-
alytic domain. PARP-1 has been reported to have affinity for intact 
DNA structures and recognizes specific octamer motif “RNNWCAAA” 
found in various gene promoters.51

Another mode of alternative DNA-independent mode of 
PARP-1 activation is based on kinase cascades. Phosphorylated 
ERK2 has been shown to significantly enhance and maximize 
PARP-1 catalytic activity in the presence and absence of damaged 
DNA.41,52 Interaction between PARP-1 and a pre-phosphorylated 
kinase has also been shown to mediate PARP-1 activation.52,53 
Likewise, phosphorylation by activated calcium-dependent protein 
kinase (CaMKII) is also capable of activating PARP-1 enzyme during 
neuronal development thereby promoting the nuclear export of 
its negative regulator KIF4.54 Moreover, overexpression of pro-
tein phosphatase 5 (PP5) led to increase in PARP-1 enzymatic 
activity in response to double-stranded DNA breaks.55 Nuclear 
nicotinamide mononucleotide adenylyl transferase 1 (NMNAT1), 
an enzyme involved in NAD+synthesis, also associates with PAR 
to enhance PARP-1 enzyme activity.56 Other proteins regulating 
PARP-1 activity include Ku,55 histone variant macroH2A1.157 and 
KIF4.58 Protein-protein interactions also seem to activate PARP-
1. Mao et  al.42 have demonstrated that SIRT6 activates PARP-1 
by mono-ADP-ribosylating it in position Lys521. Developmental 
or environmental stimuli induce PARP-1 activation and the PAR-
dependent nucleosome loosening leading to histone stripping and 
hence opening of the chromatin structure. This process allows 

F IGURE  1 Structural organization of human PARP-1 (hPARP-1):  It is characterized by FI, FII: Zinc finger motifs, FIII: Zinc ribbon domain 
(1-333 aa); NLS: Nuclear localization sequence; BRCT: BRCA1 C terminal motif (386-464 aa); WGR domain (549-634 aa) and the most 
conserved catalytic domain with PARP signature motif (PSM) between 859-908 aa and Glutamate (Glu) at 988 position.	

TABLE  2 Post-translational Modifications of Poly (ADP-ribose) polymerase 1

Modification in PARP-1 Source Residue modified Activator Result References

Auto modification Poly 
(ADP-ribosylation)

PARP K498, K521 and 
K524

Intact and 
damaged DNA

Regulation of PARP activity Altmeyer et al.38

Mono-ADP-ribosylation SIRT6 K521 dsDNA damage Enhances double-strand break 
repair under oxidative stress

Mao et al.42

Sumolyation small 
ubiquitin-related 
modifier (SUMO)

SUMO-2
SUMO 3

K203, K486 and
K512

Heat shock 
intact DNA

Transcriptional co-activator of 
hypoxia-responsive genes and 
promotes induction of the heat 
shock-induced HSP70.1 
promoter

Zilio et al.43

Acetylation p300/CREB-
binding protein

K498, K505, K508, 
K521 and K524

Inflammatory 
stimuli

NF-κB-dependent gene 
activation

Hassa et al.40

Phosphorylation ERK1/2
Protein Kinase C

S372 and T373 DNA damage Neuronal cell death
Decreased PARP-1 DNA-

binding and catalytic activity

Kauppinen et al.,41 
Beckert et al.39
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transcriptional activation. This PAR-mediated chromatin loosening 
phenomenon is detected at larval salivary-gland polytene chromo-
some puffs.59 Hence, PARP-1 can be activated by DNA-dependent 
and -independent manner which is summarized in Fig. 2.

4.3 | PARP-1: single protein with varied roles

4.3.1 | PARP-1 in DNA repair

ADP-ribosylation activity of PARP-1 is an instantaneous biochemical 
response to DNA damage induced by ionizing radiations, alkylations 
etc. At low levels of DNA damage, it detects DNA damage followed 
by repair and cell survival, whereas at high levels of DNA damage, 
it activates the cell death pathway.60 Upon DNA damage, PARP-1’s 
zinc finger FI/Zn1, FII/Zn2 and FIII/Zn3 motifs have been reported 
to relay binding signal to catalytic domain followed by the recruit-
ment of proteins involved in repair mechanism such as base excision 
repair (BER), single-strand breaks (SSBs) and double-strand breaks 
(DSBs) repair.1,61 It is also indicated to act as a DNA damage sen-
sor 62 and help in chromatin remodelling at DNA damage sites.63 
A variety of proteins like ALC1, histone mH2A1.1, scaffold attach-
ment factor SAFB1 have been illustrated to be recruited to DNA 
damage sites via PARP-1 thus proving its indispensable role in DNA 
repair.64–66 Evidences show presence of PAR-binding zinc finger 
motifs in DNA damage response and checkpoint regulation pro-
teins.67,68 PARP-2 was also shown to be involved in the later steps 
of BER/single-strand break repair.69 In nucleotide excision repair, 
PARP-1 inhibition or depletion has also shown to cause low effi-
ciency of removal of UV-induced DNA damage.70 Among mammalian 
DNA repair pathways, PARP-1 has been also implicated in homolo-
gous recombination71 and non-homologous end-joining pathways.72 
PARP-1 has been reported to interact with replication fork protein 
(Timeless) in a PAR-independent manner thereby allowing its recruit-
ment to DSB sites to promote homologous recombination.73 Thus, 

it is clearly illustrated that PARP-1 plays a vital role in DNA damage 
response.

4.3.2 | PARP-1 in cell death

Under normal physiological conditions, cell morphology, numbers, 
pattern and injury are taken care of by the process of apoptosis.74 
The mode of cell death depends on the extent of DNA damage. 
Low DNA damage can activate PARP-1 resulting in cell survival 
via DNA repair mechanisms. At moderate levels of DNA damage, 
cell undergoes apoptosis and PARP-1 activation results into cleav-
age of PARP-1 by caspases-3 and -7 into two fragments (89  kDa 
and 24 kDa)75 which is believed to be a key feature of apoptosis.76 
N-terminal 24 kDa fragment remains in nucleolus and other 89 kDa 
fragment translocates from nucleus to cytosol wherein it acts as 
a target for autoimmunity.77 Severe DNA damage leads to pro-
grammed necrotic cell death through over-activation of PARP-1.78 
Ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, 
acts as a direct interactor of PARP-1 during this process and 
elicits release of PARP-1 from the nucleus. This has been dem-
onstrated during myocardial ischaemia-reperfusion injury.79 On the 
other side, in caspase-independent cell death, it plays an important 
role in the release of apoptosis-inducing factor (AIF) from mito-
chondria to nucleus. Yu et  al.80 have studied the dependence of 
PARP-1 and AIF in caspase-independent cell death which is termed 
as ‘parthanatos’. PARP-1 has been reported to play a very crucial 
role in initiation and regulation of this type of cell death.81 
Parthanatos has been detected in many disease conditions like 
stroke, Parkinsons, diabetes, etc.82 Upon PARP-1 activation stimu-
lated with various DNA-damaging agents like NMDA, H2O2, etc., 
AIF translocates from mitochondria to nucleus and finally culminates 
into cell death.83–85 On the contrary, Mir et  al. showed that 
staurosporine-induced cell death did not involve PARP.86

F IGURE  2 Mechanism of PARP-1 
Activation. The nuclear enzyme PARP-1 can 
bind to DNA breaks resulting in the activation 
of the enzyme. DNA breaks are caused 
either by ROS, RNS or radiation or indirectly 
by DNA repair machinery where breaks are 
introduced into the DNA strands as in the 
case of alkylating DNA damage. Binding to 
special non-B-DNA structures such as bent 
or cruciform DNA or four-way junctions may 
culminate into PARP-1 activation. Protein-
protein interactions or covalent modifications 
(e.g. mono-ADP-ribosylation, acetylation or 
phosphorylation) have also been described as 
activation mechanisms for PARP-1 which are 
DNA-independent. Other proteins activating 
PARP include nuclear NMNAT, Ku and 
phosphorylated ERK2 and Histone-4 tail
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PARP-1 is also reported to be involved in autophagy induced by 
DNA damage.87 PARP-1 via autophagy displays a cytoprotective role 
in oxidative stress-induced necrotic cell death.88 Moreover, Son et al. 
89 have also reported that cadmium-mediated ROS generation leads 
to PARP-1 activation and energy (ATP) reduction, eventually culminat-
ing into autophagy in skin epidermal cells. Wyrsch et al.90 have found 
that PARP-1 and PARP-2 control cytosolic Ca2+shifts from extracel-
lular and intracellular sources during oxidative stress. The different 
Ca2+signals arise from the transient receptor potential melastatin 2 
(TRPM2) channels located in the cellular and lysosomal membranes. 
This Ca2+overload induces specific stress kinase response which leads 
to autophagy or cell death. Under mild oxidative stress conditions, 
PARP-1 operates as an autophagy suppressor after oxidative stress 
leading to cell death by activating downstream of extracellular signal-
regulated kinase 1/2 (ERK1/2) and AKT. Under severe oxidative con-
ditions, PARP-2 induces Ca2+shifts from lysosomes, while PARP-1 
becomes completely inactive. The cytosolic Ca2+overload leads to 
phosphorylation of p38, stress-activated protein kinase/Jun amino-
terminal kinase (SAPK/JNK), and cyclic AMP response element-
binding protein (CREB) with its activating transcription factor (ATF-1), 
further activating autophagy markers leading to cell survival.

PARP-1 and related PARP family members are at the intersection 
of conversing stress signalling pathways. Oxidative stress causes dis-
ruption in redox potential that extends to the ER, causing accumu-
lation of misfolded proteins, finally stimulating the unfolded protein 
response (UPR).91 It would be interesting to know if PARP-1 has a 
role in ER stress-mediated cell death as it is upstream to autophagy, 
where PARP-1 is demonstrated to play an essential role. Hence, it is 
clear that PARP-1 is an essential regulator in many of the cell death 
pathways and this has been demonstrated in many tissues. However, a 
very interesting work by Jog and Caricchio92 illustrates a characteristic 
difference in PARP-1-mediated necrosis in males and females. Male 
mice were shown to be prone to PARP-1-mediated necrosis while 
female mice showed PARP-1-independent cell death.92 Understand-
ing the role of PARP-1 in different stress conditions and even in dif-
ferent sexes would help us dissect out pathomechanisms of various 
disease conditions.

4.3.3 | PARP-1 and epigenetics

The poly (ADP-ribosyl)ation of histones leading to open chromatin 
conformation at DNA damage sites was the first indication to the 
function of PAR as an epigenetic modification.2 Recent evidence 
has shown that PAR has an important role in the epigenetic regu-
lation of chromatin structure and in gene expression under physi-
ological conditions wherein DNA integrity is maintained.93 Lodhi 
et  al.94 have demonstrated PARP-1 as a genome-wide epigenetic 
memory mark in mitotic chromatin. They report that PARP-1 estab-
lishes stable epigenetic marks at the transcription start sites in 
metaphase chromatin and these marks are a prerequisite for tran-
scriptional restart after mitosis. Moreover, PARP-1 activity epige-
netically regulates mitochondrial DNA repair and transcription.95 
PARP-1 also associates with genome-wide epigenetic regulatory 

elements suggesting a functional interplay between PARP-1 and 
DNA methylation.96 Previous studies have shown that PARP-1 can 
affect the genomic DNA methylation pattern via DNA methyl 
transferase, Dnmt1, both by regulating its expression as well as 
activity.93,97 Furthermore, the role of PARP-1 in DNA methylation 
events has been explored in induced pluripotent stem cells (iPSCs).98 
Recently, PARP-1 has been shown to be associated epigenetically 
with Tet2 (a methyl cytosine dioxygenase) during somatic cell 
reprogramming which leads to transcriptional induction at the 
pluripotency loci.99 PARP-1 has also been demonstrated to interact 
with TIP5 via non-coding RNA, thereby playing a role in mainte-
nance of silent rDNA chromatin in mid-late S phase.100 Though, 
these studies suggest the possible epigenetic involvement of PARP-
1; its mechanistic role in epigenetic control is still elusive and 
remains to be an area of great interest to researchers.

4.3.4 | PARP-1 as a chromatin modulator

Chromatin consists of genomic DNA, linker histones (H1), core 
histones (H2A, H2B, H3 and H4) and other chromatin-associated 
proteins. Early reports have shown that purified PARP-1 could 
ADP-ribosylate chromatin proteins (e.g. mainly H1), by de-
condensation of chromatin and destabilization of nucleosomes.101 
Also proven in recent reports, PARP-1 binding to chromatin can 
change the conformation and composition of nucleosome.32,102 In 
addition, it has also been demonstrated that PARP-1 interacts with 
core histone variants resulting in the recruitment and integration 
of histone variants to specific sites in the genome.57 Local chro-
matin loosening by PARP-1 has also been demonstrated well at 
the puff loci in Drosophila facilitating transcription and eventually 
helping chromatin remodelling during development.59 Nalabothula 
et  al.96 discussed the possible mechanisms of chromatin structure 
remodelling by PARP-1 as: a) it binds between entry and exit sites 
between nucleosomes and linker DNA, b) it PARylates histones, 
linker histone H1, etc. thus modifying chromatin architecture and 
c) it competes with histone H1 for nucleosome binding. All the 
above reports strengthen the role of PARP-1 in chromatin 
remodelling.

4.3.5 | PARP-1 in transcription

It is well studied that PARP-1 behaves as chromatin modifier at 
transcriptional level with a number of in vitro and in vivo experi-
ments. Electrostatic repulsion between DNA and histones due to 
transfer of negatively charged PAR molecules onto accepter proteins 
promotes transcription by recruiting transcriptional machinery.103 
PARP-1 is observed to be more localized at the promoter regions 
of most actively transcribed genes.104 The transcriptional regulatory 
roles of PARP-1 are manifested mainly through two processes, 
modulating chromatin structure and acting as a part of enhancer/
promoter-binding complexes. Based on the cell type, it can enhance 
transcription with co-activators or inhibit transcription by repres-
sors.105 Chromatin-dependent gene expression is controlled by 
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PARP-1 interacting with histones at promoter.104 The type of histone 
modification (acetylation, phosphorylation and methylation) is very 
essential for interaction between PARP-1 and DNA because it can 
add structural changes into histones.106 Phosphorylation of histone 
variant, H2Av, promotes activity of PARP-1 in Drosophila at specific 
promoter regions.107 PARP-1 is also found to be localized at DNA 
repair sites after binding to other histone variant, macroH2A.108 
Also, macroH2A1-stimulated H2B acetylation was seen in cancer 
progression which was PARP-1-dependent.109 Depletion of PARP-1 
activity resulted into ineffective loading of RNA polymerase II tran-
scriptional machinery implying its role in gene regulation.110

Recent studies suggest that PARP-1 functions as a co-activator, 
which upregulates the transcription of Nrf2, promoting the interaction 
among Nrf2 and ARE (antioxidant response elements).111 Reduced 
expression of CCN2 was found in tubular epithelial cells of kidney 
upon knockdown of PARP-1.112 In addition to this, PARP-1 also func-
tions as an insulator that organizes the genome into distinct regulatory 
units by controlling the effects of enhancers on promoters, or by pre-
venting the spread of heterochromatin.113 In vivo and in vitro binding 
studies of PARP-1 and transcription factor Yin Yang 1 (YY1) suggested 
that PARP-1 plays a promoter regulatory role and inhibits the tran-
scription of Cxcl12. In addition, changes in PARP-1-CTCF interactions 
due to serum shock induced recruitment of circadian loci to the lam-
ina leading to transcriptional attenuation.114 PARP-1 is also known 
to be acting as an exchange factor thereby controlling transcription. 
Recently, it has been demonstrated that PARP-1 functions in remodel-
ling of promoter-associated nucleosomes by replacing H2A.Z by H2A 
from FOS promoter to allow transcriptional activation in response 
to ERK signalling.115 Thus, the underlying mechanism of PARP-1-
mediated transcriptional regulation is very complex and extensive and 
hence more studies are required to explore the transcriptional role of 
PARP-1.

4.3.6 | PARP and spermatogenesis

Both PARP-1 and PARP-2 have been found to have a significant 
role in spermatogenesis.116 It has been observed that there is 
significant PARP expression during the earlier stages of sper-
matogenesis and its transcription declines during late stages of 
maturation.117,118 The levels of PARP-1, PARP-2 and PARP-9 were 
found to be increased in mature sperms as compared to immature 
sperms 116 and interestingly PARP-1 was also found to be down-
regulated during the haploid stage of meiosis.119 The presence 
of PARG in the nuclei of rat primary spermatocytes also suggests 
that the levels of poly (ADP-ribose) in these germ cells are highly 
regulated.117 Moreover, Meyer-Ficca et  al.120 reported the pres-
ence of PAR polymerization by PARP-1 and PARP-2 in rat sper-
matids, highest during the phase of chromatin condensation.

Studies demonstrating an increase in DNA strand breaks in all pop-
ulation of elongating spermatids in human testis 121 and the presence 
of higher levels of PARP-1, PARP-2 and PARP-9 in ejaculated sperm 
from fertile men compared to infertile men indicate a possible rela-
tionship between PARP expression and male infertility.

4.3.7 | PARP-1 in cell differentiation/multicellularity

Out of the various roles of PARP-1, its role in cell differentiation 
and multicellularity has yet to be unravelled. However, accumulat-
ing reports in different model systems suggest a definite role of 
PARP-1 in growth and multicellularity. For example, Drosophila 
PARP has been shown to act in ectodermal specification and neural 
crest development in zebrafish.122 Our laboratory studies are indica-
tive of PARP’s role in D.discoideum development wherein its down-
regulation led to arrested development.123 Recent studies from 
our laboratory show PARP-1 involvement in D. discoideum growth 
and multicellularity by ADPRT1A (PARP-1 orthologue) overexpres-
sion which led to delayed growth and developmental morphogen-
esis.124 We have also reported that PARP may be essential in 
combating stress conditions in D. discoideum.83–85,125,126 Genetic 
studies on PARP-1 orthologues in fungus demonstrated defective 
development and decreased life span.127–129 As we move to the 
higher life forms like plants, it was seen that AtPARP-1 and/or 
AtPARP2 knockdown reported to alter Arabidopsis development 
130 and AtPARP2 orthologue in oilseed rape (Brassica napus) did 
not affect its development.131 However, further work is mandatory 
to explore the role of PARP in plant development. In addition, 
studies in Drosophila also suggest importance of PARP in chromatin 
loosening at ecdysone-inducible regions thereby inducing purparium 
formation and metamorphosis.59,132 These results are also substanti-
ated by mice studies wherein PARP-1 and PARP-2 double-mutant 
mice were found to be not viable and die at the onset of gas-
trulation, establishing the importance of both the PARPs during 
early embryogenesis.133 Recently, Hamazaki et  al.134 have shown 
that PARP inhibition caused inhibition of DNA demethylation of 
the IL17d promoter region at the two-cell stage leading to down-
regulation of genes essential for early embryogenesis. Thus it is 
clear from the above that a strong association of PARP-1 exists 
in differentiation and multicellularity, which is yet to be explored 
in detail.

4.3.8 | PARP-1 in metabolic regulation

PARP-1 has been known for its role in DNA repair as discussed 
in above sections. However, recent data suggest a role for 
PARP-1 in metabolic regulation by influencing mitochondrial 
function and oxidative metabolism. Mouse knockout studies 
showed that PARP-1 deletion led to increased food intake.135,136 
PARP-1−/− mice showed an increased metabolic rate.137 PARP-1 
has also been associated with reduction in the glycolytic rate 
which has been linked to a reduction in NAD+availability over 
the years.138 Over-activation of PARP activity can lead to meta-
bolic perturbations through reduction in ATP, NAD+/NADH levels, 
which is enough to impair carbohydrate metabolism.139 It also 
changes the flow of glycolytic metabolites into Krebs cycle and 
thereby compromised energy production in mitochondria.140 
However, recent evidence indicates that PARP-1 may be respon-
sible for reduction in hexokinase activity and hence affects the 
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cellular glycolytic rate via poly (ADP-ribosyl)ation of hexokinase 
directly.141 PARP-1 and PARP-2 activation have also been dem-
onstrated to affect mitochondrial activity negatively.142 Hence, 
PARP inhibition arises as therapeutant to treat mitochondrial 
dysfunction.

In addition, PARP-1 also plays a crucial role in the circadian entrain-
ment and regulates feeding behaviour. Asher et al.143 demonstrated 
that CLOCK (Circadian transcription factor)–BMAL1-dependent gene 
expression was altered in PARP-1-knockout mice, in response to 
changes in feeding times. In contrast, the deletion of PARP-2 did not 
affect food intake or daily behaviour.135 Moreover, both PARP-1−/− 
and PARP-2−/− mice displayed enhanced energy expenditure.135,138 
PARP-1−/− mice showed an increased mitochondrial content in their 
brown adipose tissue (BAT),138 which physiologically renders them 
to be able to maintain their body temperature during cold exposure. 
Interestingly, PARP-2 deletion does not influence mitochondrial bio-
genesis in BAT.138 Furthermore, it has been suggested that PARP-1 
acts as a positive regulator of adipogenesis and adipocyte function 
resulting in fat deposition.144 Studies have confirmed that PARP-1 

regulates adipogenic gene expression and is required selectively for 
adipocyte function.145 PARP-1−/− and PARP-2−/− mice also displayed 
an increased glucose clearance 135,138 suggesting the increased insulin 
sensitivity. Thus, these reports suggest the metabolic involvement of 
PARP-1 and PARP-2; however, more studies are needed to confirm 
these findings and to explore new metabolic regulatory functions of 
PARP.

4.3.9 | PARP-1 and cancer

Errors in replication process, production of ROS and UV radiations 
result in DNA damage which includes single-strand breaks (SSBs), 
double-strand breaks (DSBs), etc. Cells then signal DNA repair 
pathways such as nucleic acid excision repair (NER), base excision 
repair (BER), mismatch repair (MMR), non-homologous end-joining 
(NHEJ) and homologous recombination (HR) resulting into cell sur-
vival with an exception of tumour cells. PARP-1 and PARP-2 are 
key regulators for the function of DNA repair mechanisms; however, 
genetic disorders, such as BRCA1 and BRCA2 mutations, prevent 

F IGURE  3 PARP-1 and cancer therapy. (a) In normal cells, upon DNA damage like SSB, DSB and non-B-DNA structures, PARP-1 gets 
activated and thereby aids in the recruitment of DNA repair proteins such as the scaffolding protein XRCC1 to sites of SSBs through BER, 
whereas DNA-PKcs, Ku70 and Ku80 to sites of DSBs through NHEJ. It also aids HR via recruitment of factors like ATM, Mre11 and Nbs1 
to sites of DSBs. Another very essential process of HR repair involves localization of BRCA-1 and BRCA-2 to sites of double-stranded 
DNA damage. In cancer cells bearing BRCA1/2 mutations or deficiency (red star), cells are rendered faulty in HR repair (red no symbol) 
and thus there is complete dependence on NHEJ (error-prone) for DSB DNA repair and SSB for BER (red arrows); both of which are PARP-
1-dependent. Thus, PARP inhibition serves as an excellent approach for therapy. BRCA1/2 mutations or deficiency along with PARP-1 
inhibition leads to amplification of DNA instability due to impairment in BER-, NHEJ- and ATM-mediated HR repair and chromosomal 
aberrations results in cell death. (b) PARP-1 inhibitors like Olaparib, Veliparib, etc. have been promising therapeutic candidates in case of 
breast cancer and ovarian cancer—Approach 1. Approach 2a uses PARP-1 inhibitors in case of epigenetic modulation or artificial inactivation 
of BRCA pathway in case of sporadic cancers, whereas approach 2b involves use of chemotherapy and radiation along with PARP-1 inhibitor 
depending on the cancer type

(a)

(b)
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DNA repair mechanism and increase the risk of malignancies.146 
Inhibition of DNA repair process may lead to cell death and this 
brings PARP-1 as a perfect target for anti-cancer therapy. PARylation 
of targeted proteins by PARP-1 on activation by SSBs and DSBs 
facilitates the recruitment of DNA repair proteins such as XRCC1 
to sites of damage.147,148 PARP-1 may also facilitate HR via recruit-
ment of factors like ataxia telangiectasia-mutated (ATM, Ataxia 
Telangiectasia Mutated), Nijmegen breakage syndrome 1 (Nbs1) 
and mitotic recombination 11 (Mre11) to sites of DSBs.149 However, 
major role in HR repair involves localization of BRCA-1 and BRCA-
2. BRCA-1 plays an essential role in the surveillance of DNA 
damage and transduction of DNA repair responses, while BRCA-2 
is directly involved in double-stranded DNA repair, via modulation 
of Rad51 by HR.150

PARP-1 inhibition does not cause cell lethality by itself, as the cell 
has an intact HR pathway for DNA repair. Cells that have a mutated 
BRCA1 or BRCA2 genes as in the case of breast cancer or those that 
are deficient in BRCA1 or BRCA2 proteins like sporadic cancers are 
found to be defective in their ability to repair DNA through HR and 
henceforth depend on error-prone NHEJ. This results in amplification 
of DNA instability and chromosomal aberrations eventually causing 
cell death (Fig. 3a). This synergistic effect has been very well demon-
strated by Arun et  al.,151 wherein PARPi AZD2281 showed more 
promising results in BRCA1- and BRCA2-bearing mutants via induc-
tion of autophagy. This concept of synthetic lethality has been imple-
mented upon in cancer therapeutics. In cases of breast and ovarian 
cancer, treatment with PARP-1 inhibitors Olaparib and Veliparib 

(Approach A) has found positive clinical results.152 Epigenetic mod-
ulation or artificial inactivation of BRCA pathway (Approach 2a) in 
cases of sporadic cancer along with the use of PARPi plays a key to 
therapeutics. This synergistic inhibition of DNA repair poses as a 
double-hit mechanism for cancer cell death. PARPi can also be used in 
combination with chemotherapy and radiation (Approach 2b) to ren-
der the cells prone to cell death under enhanced damaged conditions 
as in cases of non-Hodgkin lymphoma cell line, use of PARPi in com-
bination with both external beam radiation and 131I-tositumomab; 
radio sensitization with veliparib in head and neck carcinoma cell lines 
and lung cancer xenograft models; or with niraparib in neuroblastoma 
cell lines, and whole brain radiation in cases of brain metastases 153 
(Fig. 3b). In addition, Table 3 compiles various drug combinations with 
Olaparib (Table 3a) and Veliparib (Table 3b) which are being currently 
extensively used in various cancers along with its side effects.

The transcriptional role of PARP-1 in cancer includes chromatin 
modulation of tumour suppressor and oncogene function, regulation 
of the metastatic processes, alteration of cell survival and adapta-
tion. For example, in liver cancer, ATPases activity of ALC1 (amplified 
in liver cancer 1) was found to be dependent upon both PARP-1 and 
NAD+.154 Furthermore, various tumour cell lines exhibited overex-
pression of PARP-1 with malignancy progression.155 One of the recent 
studies indicated that following irradiation, PARP-1 activation plays a 
critical role in prostate cancer cell lines (LNCaP and DU145).156

PARP-1 is also thought to be an important modulator of tumour 
suppressor gene, p53.157 In addition, PARP-1 is known to regu-
late organ site-specific tumour suppressors as explained by tumour 

F IGURE  4 PARP-multifunctional protein. Poly ADP-ribose polymerase family of proteins are detected from prokaryotes to eukaryotes. The 
number of PARP family members and their involvement in various cellular processes increases with the complexity of the organism. PARP-1, the 
most studied PARP family member is involved a wide range of processes like DNA repair, cell death, transcription, spermatogenesis, metabolic 
regulation, epigenetics and differentiation
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suppressor gene, APC (adenomatous polyposis coli). The loss of this 
gene was associated with sporadic colorectal cancer (CRC). Collective 
reports suggest that PARP-1 controls activity of T-cell factor (TCF)/lym-
phoid enhancer factor (LEF), i.e. TCF/LEF complex in CRC with higher 
expression levels of PARP-1.158,159 In addition, Schiewer et  al. 160 
showed that PARP-1 controls androgen receptor (AR) association and 
functions with chromatin using in vitro and in vivo systems. In particu-
lar, reduction in AR activity was correlated with significant anti-tumour 
response to PARP-1 inhibition, indicating the dependence of prostate 
cancer on PARP-1 activity.160 Thus, these studies suggest that inhibi-
tion of PARP-1 has potential as a cancer therapeutic through at least 
two mechanisms: (1) by potentiating chemotherapeutic agents that 
damage DNA and increasing tumour sensitivity; and (2) by inducing 
“synthetic lethality” in cells that are highly dependent on PARP-1, due 
to deficiency in homologous recombination such as BRCA1 mutants.

4.3.10 | Clinical implications of PARP-1 in other 
diseases

Dysfunctional PARP-1 has been linked to the onset and progres-
sion of myriad of diseases including cancer, ageing, diabetes, neu-
rological diseases, etc. Several evidences point out the role of 
PARP-1 in cancer. In addition, PARP-1 has also been associated 
in neuronal pathology. PARP-1 inhibition has been proven to play 
a protective role in Parkinsons and Alzheimer’s disease.161 Moroni 
et  al. also illustrated PARP-1 inhibitor HYDAMTIQ to be very 
effective in conferring neuroprotection post stroke.162 In addition, 
PARP-1 activation plays a role in diabetic nephropathy, neuropathy 
and retinopathy. Studies in experimental models reflect the role 
of PARP-1 in inflammatory responses by promoting inflammation-
relevant gene expression. Moreover, activation of NF-κB, AP-1 
and heat shock factor protein-1 transcription factors, classically 
known to signal inflammatory gene expression are mediated by 
PARP-1.163,164 PARP-1 also controls immunosuppressive function 
of regulatory T cells by destabilizing Foxp3.165 Also, an increase 
in Foxp3+T regulatory cells has been observed in PARP-1 defi-
ciency.166 PARP-1 has thus emerged as a very important therapeutic 
target not only in cancer but also in several other diseases which 
can be further probed for its therapeutic potential.

5  | CONCLUSION

The current research in PARP-1 biology unravels the role of PARP-1 
beyond DNA repair and its involvement in several biological/cellular 
processes, such as epigenetics, transcriptional regulation, spermato-
genesis, differentiation, etc. (Fig.  4). The role of PARP-1 as a tran-
scriptional regulator has shed light on the broader aspect of PARP-1 
in the cell. Recent studies have also highlighted the multifaceted role 
of PARP-1 in transcriptional regulation and provided new insights into 
how PARP-1 plays a very important role in signalling pathways in the 
cell. In addition, PARP-1’s potential in therapeutics for diverse disease 
conditions require more animal-based clinical studies. Much work needs 

to be done to understand how PARP-1 works in conjunction with 
the other PARP family members. Moreover, PARP-1 inhibitors have 
been a promising therapeutic for a wide range of pathological conditions. 
Inhibiting PARP activity uncovers potential of PARP inhibitors as 
promising candidates for cancer therapy, particularly in BRCA1/2-
mutated cancers, alone or in combination with cytotoxic drugs. p53-
deficient breast cancer cells treated with a PARP inhibitor happen to 
lose resistance to an apoptosis promoting, clinically active anti-tumour 
agent called doxorubicin. However, these PARP inhibitors have several 
side effects that are toxic to the cell as the reports clearly show 
PARP-1’s role in physiological conditions. Hence, to harness the 
therapeutic potential of PARP-1, studies are required to find out new 
inhibitors with least side effects. Thus, PARP-1 has now opened new 
avenues for researchers to understand PARP-1’s multifunctional role 
in the cell which would eventually aid to further expand the utility 
of PARP family and its inhibition in therapeutics.
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